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SUMMARY 

Tfe^-p^e^ent paper reports on a detailed analysis of the buoyant rise 
of fireballs in the earth's atmosphere.    Formulae for the rise velocity 
and height,   and the density,  mass,   radius and expansion velocity of 
the fireball are given.    The computation of fireball temperature is 
discussed in detail; no explicit expression could be given because of 
the nature of the problem.    The assumptions and simplifications on 
which the analysis rests are summarized in a separate section.    In 
order to facilitate applications,  a complete numerical example is 
given.     Frequently used quantities are calculated and presented in 
graphical and tabular form. 
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INTRODUCTION 

The solution of the problem of physically describing low-altitude 
fireballs is best undertaken in three steps.    These are; the radiative 
growth of the fireball; the establishment of pressure equilibrium be- 
tween the fireball and the ambient atmosphere; the buoyant rise of 
the fireball.    Each of the steps is dominated by different physical 
phenomena and consequently by a different set of equations.    Break- 
ing the problem into distinct steps results therefore in uniformity of 
approach throughout each step.    A further important simplification 
is the possibility of suitably averaging the detailed results of one 
step in order to obtain better manageable starting values for the 
next step.    The mentioned steps are discussed in general in the 
following.    The problem of buoyant fireball rise is treated in detail. 
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GENERAL DISCUSSION 

1.    Radiative Fireball Growth 

The first step is the analysis cf the initial radiative growth rf the 
fireball.    Immediately after deposition of the X-ray energy the fire- 
ball grows by reradiaticn.    The process is described by the radiation 
diffusion equation.    The Important quantity appearing in this equation 
is the Rcsseland mean free path.    For a semi quantitative understand- 
ing of the radiation process it is necessary to know that the Rosöelind 
mean free path decreases with temperature to a certain minimum at 
a temperature  TE,   and then increases again.    (The Rcsseland mean 
free path also decreases with density.    This is important for the es- 
tablishment of an upper height limit to which the radiatively growing 
fireball is described by the radiation diffusion equation.',   Plotting 
fireball temperature  T normalized to the temperature  Tr-  at the 
center cf the fireball with respect to radial distance   r  normalized 
to fireball radius   rf s   one obtains the schematic drawing shown in 
Figure 1.    (The distance from the fireball center at which the tem- 
perature is close to ambient temperature  TA is defined as  rf.)   Ini- 
tially the temperature  TF  in the center of the fireball is high so that 
the Rosseland mean free path is long and a large portion of the fire- 
ball is isothermal.    At the fireball edge the temperature drops so 
that the Rosseland mean free path decreases and the fireball grows 
in size by radiation diffusion.    The temperature  Tp  at the center 
drops as the radius   rF   increases and more air is engulfed into the 
fireball. 

Initially,  when TF  is high,  most of the radiation energy is transport- 
ed at temperatures much exceeding TE,   that is above that tempera- 
ture for which the mean free path of radiation is a minimum.    (This 
can be seen most clearly by considering that for large  TF,  TE/TF  is 
well down on the  T/TF,   r/rF  curve.    Most of the radiation transport 
takes place to the left of this point,  at. temperatures exceeding  TE. ) 
Only a small fraction of the total radiation energy escapes therefore 
to large distances.    The fireball grows and Cools by radiative expan- 
sion at the fireball edge where the temperature drops and the Rosse- 
land mean free path decreases.    As the temperature at the center of 
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Figure 1.1.    Temperature Distribution Within the Fireball 
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the fireball drops,  more of the radiative energv is transported at 
temperatures below  TE  and an escape to large distances.   (Aga.'.r., 
this c-.n bp seer, most eas-lv by considering that for lew   TF,   TE/Tr 

is up   .a the   T/Tf,    r/rF   curve and a large portion -f the rad;at;rr. 
transport occurs it temperatures below  TE.)   An increasing frac ■ 
tier,  .f the total radiation energy escapes to large distances.    This 
is one of wc processes terminating radiative fireball growth. 

The ether process is hydrodynamic expansion of the fireball.   During 
the time of radiative fireball growth the high pressure within the fire- 
tall ac jelerates the air particles away from the center of the burst. 
Once the speed of hydrodynamic expansion,   which is nearly equal to 
the spe-d cf scund within the fireball,   becomes larger than that of 
radiative expansion,  the radiative expansion phase is terminated. 
A sizeable fraction of the fireball's heat content may be transferred 
into blast energy and cariied away to large distances.   Hydrcdynamic 
expansion competes therefore with, rad'.ative energy transport to large 
distances in terminating the radiative growth cf the fireball. 

The computation cf radiative fireball growth may be one-dimensional, 
that is spherically symmetric,   as long as the fireball radius is smali'. 
compared    to a scale height.    Otherwise a two-dimensional model 
should be used.    The significant result« of the computanon are fire- 
ball radius and fireball temperature at the end of the radiative phase. 

In case the radiative expansion phase is terminated by hydrodünamic 
expansion, the ccrrespvnding density, temperature and velocity dis- 
tributions within the fireball would be of interest for a more detailed 
analysis of the problem. 

2.    Establishment cf Pressure Equilibrium 

The second step in the physical description of lew-altitude fireballs 
involves the analysis of the processes taking place between the end 
of the radiative expansion phase and the establishment of an approxi- 
mate pressure equilibrium between the fireball and the ambient at- 
mosphere. 

in case hydrcdynamic. expansion ended the radiative expansion phase, 
fireball cooling by both radiation and hydrodynamic expansion must 
be considered from the beginning.    This is likely to be the case at 
low altitudes where the mean free path of radiation is small.    It i- 
important to realize that radiative cooling depends strongly upon 
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density.    The. latter depends upon hydrodynimic expansion which in 
turn is a function of temperature.    This interaction between cooling 
by radiat;cn3   cooling by the generation of a blast wave,  and ceding 
by expansion of the fireball gas make? the secrr.d step a difficult one. 
It must be n'ted that the hydrodynamic expansion itself may caase the 
formation cf a new fireball by shock heating the ambient air to high 
temperatures.    This fireball will also c vcl by radiation and expansion. 
It is convenient to refer to the fireball produced by radiative expan- 
sicii as the "fireball" proper.    The fireball produced by the hydrody- 
namic shock is best referred to as the "shock-heated region. " 

In case, the end of the radiative expansion phase was marked by the 
transmission of a significant fraction of the  radiation energy to large 
distances,   firebail cooling by radiation is computed first and hydro- 
dynamic expansion is taken into account ence it becomes significant. 
Since the mean free path of radiation increases with decreasing den- 
sity,  the termination of the radiative phase by radiative cooling is 
likely to oc;;ur at high altitudes.    A rough measure for the time until 
signif.cant hydrodynamic motion sets in is obtained as that time which 
the rarefaction wave nesds to travel one-tenth of the fireball radius 
inward.    By then,  thirty percent of the firebail mass are affected by 
hydrodynamic motion. 

During the time of fireball expansion to pressure equilibrium,   a 
"pressure force" (see Reference 1; acts upon the fireball.    This force 
is a result of the exponential density distribution in the atmosphere 
which causes the pressure at the bottom of the is ^thermal fireball to 
exceed that at its top.    The resulting force will drive portions of the 
fireball upward until pressure equilibrium with the ambient atmosphere 
has bean attained.    The acceleration due to the pressure forces drops 
from a value of g(RFTF/RATA)  at the beginning of the expansion phase 
to zero at its end.    (The subscripts  F   refer to the fireball and the 
subscripts A to the ambient atmosphere.     R is the specific gas con- 
stant. )   At altitudes and yields where the fireball radii become com- 
parable to about three-tenths of an atmospheric scale height,   the total 
mass of ambient, air above the burst is comparable or small compared 
tc the mass of air within the fireball and the "pressure force" will be 
able to drive the fireball into a ballistic trajectory (see Reference 1). 
This means that the fireball speed will be affected only insignificantly 
by the entrainment of ambient air and by drag and mainly be slowed 
down by gravitational deceleration.    In addition,  the time until pres- 
sure eqailibrium between fireball and ambient atmosp/here is estab- 
lished increases with height for the same yield,   so that the "pressure 
force" acts longer at high altitudes thus achieving higher speeds. 
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The "pressure force" is not the only force acting upon the fireball. 
As scon as the fireball density drops below the ambient value,  a 
buoyancy force appears.    This force in contrast to the "pressure 
force" continues to act after pressure equilibryum has been estab- 
lished.    The acceleration of the fireball due tc buoyancy increases 
frcm -^ero at the beginning to Zg at the end of the expansion phase. 
Thereafter it declines,   but persists until the fireball density has 
become equal to the ambient density.    At low altitudes,   the large 
mass of air above the fireball prevents the fireball from following 
a ballistic trajectory.    Its speed attained through the "pressure 
force" will rapidly be slowed down by entralnmer.t and drag.    The 
speed attained through the buoyan'cy force on the other hand per- 
sists for a long time and carries the fireball to higher altitudes. 
Ever, sc,  the "pressure force" may still Influence the initial por- 
tion cf the fireball rise significantly. 

A rne-dimens ional,   spherically symmetric calculation of the second 
step will show many of its essential features.    In particular,   it will 
give average values of fireball radius,  temperature and density.    A 
one-dimensional model may be satisfactory for small ratios of fire- 
ball radius to scale height.    It will not bring out the effect of the 
pressure force and of buoyant effects.    For significant ratios of 
fireball radius to scale height,   a two-dimensional model is prefer- 
able.    It will yield rise speeds due to the pressure as well as the 
buoyancy force. 

3.    Buoyant Rise 

The third step in the physical description of low-altitude fireballs 
for those cases where it is more significant than rise due to the 
"pressure force" is the analysis of the buoyant rise.    At the termi- 
nation cf the fireball's expansion tc ambient, pressure the fireball 
will be rising with some speed,  which to a certain extent is due to 
the "pressure force" and to a certain extent to the buoyancy force. 
It will be   shown in a later section that the rise speed is small enough 
so that the speed of fireball expansion is below the sound speed with- 
in the fireball.    This allows the fireball to remain in pressure equi- 
librium with the ambient atmosphere. 

Initially,   cooling by radiation dominates.    Eventually,   entrainment 
of ambient air becomes important.    The change In fireball tempera- 
ture and density due to radiation and entrainment and also due to ex- 
pansion alters the radiative fireball properties,    This interaction 
between the various processes makes the analysis difficult.    As the 
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fireball temperature decreases by radiation its density increases 
and the buoyancy force diminishes. 

Once radiative cooling is less important a mechanism for dissipa- 
tion of the fireball's heat content than entrainment of ambient air, 
the latter will decrease the fireball's average temperature,  in- 
crease its average density and thus reduce the buoyancy force.   The 
details of the process will depend upon the degree of mixing and 
heat exchange occurring between the original hot fireball gas,  the 
already entrained and heated ambient air and the newly entrained 
air.    The fireball will eventually consist of a mixture of gases each 
at ai different temperature and at a different density,  but all at nearly 
equal pressure.    This non-uniformity and the exponential pressure 
and density distribution (see Reference 1) within the fireball will set 
up internal motions.    Some of these will be random in nature be- 
cause they are caused by the particular way in which portions of air 
are entrained,  mixed and heated.    They are the cause of turbulence 
within the fireball.    Other motions,  most likely those due to the ex- 
ponential character of the atmosphere,  will be independent of en- 
trainment.    They may cause predictable effects.    The formation of 
the torus or smoke ring (see Reference 1) seems to be the most im- 
portant example of this kind of motion. 

Expansion during buoyant rise will also decrease fireball tempera- 
ture and increase its density.    It can be shown that this effect will 
eventually be more important than mass entrainment.    It always 
controls the final phase of buoyant fireball rise. 

In the following,  a simplified analysis of the mass entrainment and 
expansion controlled phase of buoyant fireball rise is presented. 
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ANALYSIS 

4.    Assumptions and Simplifications for the Analysis of 
Entrainment and Expansion-Controlled Buoyant Rise 

In the present report, a much simplified solution for the buoyant 
fireball rise is presented. Its basic assumptions and simplifica- 
tions are: 

It is assumed that the fireball is of spherical shape throughout the 
duration of the buoyant rise.    Its physical description will be in 
terms of average values of density,  pressure and temperature. 
The assumption of a spherical shape is not realistic in view of the 
fact that all buoyantly-rising fireballs eventually change from a 
spherical into a toroidal shape.    The calculation of only average 
values may justify the assumption of a spherical shape. 

The aerodynamic drag of the rising fireball is assumed to be pro- 
portional to its cross-sectional area,  the square of its speed,   the 
density of the ambient atmosphere and a constant drag coefficient. 
For the numerical example presented,   the drag- coefficient of a 
solid sphere is assumed.    While it is difficult to assess the appli- 
cability of the drag coefficient of a sphere,  the general assumption 
of aerodynamic drag seams to be reasonable.    All buoyantly-rising 
fireballs are much smaller than an atmospheric scale height.   They 
do therefore move in the atmosphere under the same conditions as 
those bodies do,   for which aerodynamic drag has been found to apply 
in moving through a gas of uniform density.    It also turns out that 
the drag due to the continuous entrainment of ambient air leads, 
under assumptions which are intuitively correct,   to an expression 
analogous to aerodynamic drag.    Thus the assumption that con- 
ventional aerodynamic drag acts on buoyantly-rising fireballs 
seem.s justified. 

It is assumed that the speed of expansion of the rising fireball is 
small compared to the sound speed in the fireball.    This will allow 
pressure equilibrium between the fireball and the ambient atmos- 
phere.    This assumption will be true for all possible cases of interest. 
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It is assumed that the rate of mass entrainment of ambient air can 
be described by the product of the surface area of the fireball,  its 
speed relative to the atmosphere,  the ambient density and a constant 
mass entrainment factor.    It is further assumed that the entrained 
air is attached to the fireball at the ambient density.    This implies 
that the entrained air is instantaneously accelerated to the speed of 
the fireball. 

The analysis starts when the initial acceleration of the fireball,   due 
to the "pressure force" and the buoyancy force,  has given way to a 
quasi-stationary behavior of the rise speed.    Also,   fireball cooling 
by radiation must have become less important than cooling by en- 
trainment or cooling by expansion in order for the analysis to be 
applicable.    It is difficult to give a criterion for the time interval 
between the burst and the time when radiation cooling becomes un- 
important.    On the other hand,  it is fairly easy to give the time 
interval after which a quasi-stationary rise speed is attained.   For 
small fireballs,  that is,  for fireballs in which the rise speed due to 
the "pressure force" is small compared to that due to the buoyant 
force,  the fireball will rise with significant speed once the above 
mentioned quasi-stationary behavior of rise speed has been attained. 
In general,  entrainment and,   consequently,   cooling by entrainment 
may be expected to start once the fireball has acquired its quasi- 
stationary rise speed.    The fireball acceleration time is therefore 
the minimum time after which the analysis will be applicable. 

It is assumed that no heat is exchanged between the fireball and the 
entrained air.    This assumption is unrealistic,   since actually the 
entrained air removes heat from the fireball.    This increases the 
density of the hot fireball gas and decreases the density of the en- 
trained air.    The assumption that no heat exchange between the hot 
fireball gas and the entrained air takes place is therfore similar 
to averaging between the truly increasing fireball density and truly 
decreasing density of the entrained air.    An assessment of the va- 
lidity of this procedure must await a more detailed study of the 
heat exchange process. ''" 

It is furthermore assumed that both fireball gas and entrained air 
change their temperature adiabatically as they rise and expand. 
This is a perfectly tenable procedure,   since adiabatic expansion 
actually takes place at times when energy loss by radiation has be- 
come unimportant.    At late times,  when the fireball has cooled suf- 
ficiently,  the fireball gas starts to behave thermodynamically like 
ambient air and can be described by a constant ratio of specific heats. 

See page 49- 
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It is assumeri that the fireball radius and its average density and 
temperature are known at the time when the analysis starts to be- 
come applicable.    A numerical value for the radius is much more 
easily guessed at than values for average density and temperature. 

5.    The Equation of Motion of the Buoyant Rise 

It is convenient to start the analysis of buoyant rise by considering 
the equation of motion of the buoyantly accelerated fireball.    The 
equation of motion is 

d [M(l + DA/2pF)v]/dt  =  (pA--pF)Mg/"pF-CdDAAv2/2       . (5.1) 

M  stands for the fireball mass;   pA,   "pV for the ambient,  average 
fireball density;  v for the velocity of the fireball;  g for the gravi- 
tational acceleration;   Cd for drag coefficient and A  for cross- 
sectional area of the fireball. 

It is easy to see the physical significance of the terms.    An excep- 
tion is the inclusion of the additive term  pA/2pF into the first paren- 
thesis on the left.    This term takes the force into account which 
appears when the accelerated fireball displaces the ambient atmos- 
phere (see Appendix 1).    The expression for the drag is the conven- 
tional one for the motion of a solid sphere in a gas.    The drag coef- 
ficient is a function of the Reynolds number and depends upon rise 
speed,  ambient density and fireball radius (see Appendix 2).    The 
entrainment of ambient air into the fireball is included by differen- 
tiating the momentum rather than the speed with respect to time. 
Carrying out the differentiations and multiplying by  2'pF/MpA leads, 
after rearrangement of terms,  to 

|       ^F 
1 +  

\        PA] 

fv dM   dvi   ^_^±_Z.^i _ 
\M   dt + dt l+ pA   dt ~"^   dt    ^     8 

pF\    CdpFAv 

Any change in fireball volume  V    is due to two causes.    One cause 
is the expansion of the rising fireball in equilibrium with the instant- 
aneous ambient pressure.    For the case that no ambient air is en- 
trained into the fireball,  its mass is conserved,  and it follows that 
any change in its volume V  due to expansion is given by 

dVex =  V 
dT, _ dp/ 

TF        PA  i 
(5.3) 

10 
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This equation follows from the equation of state of the expanding fire- 
ball which is in pressure equilibrium with the ambient atmosphere 

pAV  = MRFTF (5.4) 

by differentiation.    The ambient pressure is denoted by pA,   the 
average fireball temperature is  TFj   the specific gas constant of 
the average fireball gas is  RF.    The quantities  TF and RF  are de- 
fined in Appendix 3.    Use of the adiabatic equation of state for the 
average fireball gas 

1-VF 

TF pA      F     =   const       , (5, 5) 

for substitution of  dTF/TF  in Equation (5. 3) leads to 

V    dp. 

YF     P, 

The exponent  YF  in the adiabatic equation of state is defined in Ap- 
pendix 4. 

The change in ambient pressure can be described by the change in 
ambient density 

dDA/DA ~  -dh/HSp       , (5.7) 

and the change in ambient temperature 

dTA/TA - -dh/HST       . (5.8) 

Density as well as temperature are described by scale heights.    The 
scale height for the density distribution is  HSp .    The scale height for 
the temperature distribution is HST.    Their values are discussed in 
Appendix 5.    With Equations(5. 7) and (5. 8) the ratio  dpA/pA  is 

^PA J. X I 

(5. 9) -dh 
PA Hsp     HST 

By introducing the equivalent scale height Hs, 

w- = ih + Tr   ' (5-10) 
"38 "Sp "ST 

11 
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and substitution for  dh from Equation (5. 7) the change in fireball 
volume (5. 6) due to expansion is 

V   Hsn  dp. 
dVex  =   -^--^-^      . (5.11) 

v F   H3.      0 

The other cause for a change in fireball volume is the entrainment of 
ambient air.    For a mass  dM which is entrained into the fireball, the 
fireball volume will increase by 

dVe =  dM/Dejl       . (5.12) 

The entrained air has the density  p0 i after having entered the fire- 
ball.    The density  pe i is the instantaneous ambient density in case 
the entrained air is rapidly accelerated to the fireball's rise speed. 
The total change in fireball volume is due to the sum of the two men- 
tioned changes in volume 

HM        V    HSD   dPA 
dV  =—_==- --i£ —       . (5. 13) 

Pa,!        YF   H8«     P* 

The change in the average fireball density is therefore 

M _  |        DF    PA 
JPF  =   d —    =   pF   1 - — -— 

V PA   Pe.l '   I 

^ + ^^1      . (5.14) 
M       YF H9e    PA 

(This equation is very important and will be used in a different con- 
text. ) 

Substitution of expression (5. 14) into the equation of motion for the 
buoyant rise (5. 2) and rearrangement results in 

1 + 
PA 

2PF  dv I      fM   |?   _^A_|^_vdM     v_l    J_Hsp]dPA     CaPpAv2 

dt        6|      pA|   \     Pe,i|pAM   dt     pA|     Yp Hs6/dt M 

(5.15) 

The mass of air entrained per unit time   dM/dt is assumed to be given 
by 

—   =   \4nrF pAv       . (5. 16) 

The fireball radius is rp, \ is the "mass entrainment factor. " The 
expression is based on the intuitive feeling that a certain fraction of 
the total mass of ambient air with which the fireball comes into con- 
tact in rising a unit distance becomes permanently attached to the 

12 



RM 63TMP-25 

fireball. The "mass entrainment factor" \ may be determined by a 
comparison of theoretically computed with experimentally measured 
rise speeds. 

Substitution of the expression (5. 16) for the mass entrainment rate, 
of the expressions for the crcss^sectional area and mass of a spheri- 
cal fireball of radius  rF and average density "pf,   and the assumption 
of rapid acceleration of the entrained air to fireball rise speed,   so 
that  pe i = PA,    results in 

/     2p^ 
1 + — 

PA 

— -2    1    — 9L 3 5 =   i   (■    i H 

rF    4 rF 

3 1 , 1 SP    ..3 

^t-A'-t^ ■     (5-17' 
It is seen that entrainment produces a drag which is proportional to 
the square of velocity and inversely proportional to fireball radius 
just as the aerodynamic drag.    It is also seen that in an isothermal 
atmosphere,   that is in an atmosphere in which the scale height HST 

of temperature is very large,  the fireball experiences a slight ac- 
celeration proportional to the square of its speed.    This acceleration 
is due to the decreasing mass of air which the fireball displaces as 
it rises.    This acceleration decreases from its value in an isothermal 
atmosphere for a positive value of HST,   that is when the atmospheric 
temperature drops with height.    Then the fireball expands more rapid- 
ly than in an isothermal atmosphere and displaces slightly more am- 
bient air than in an isothermal atmosphere.    The acceleration increases 
from its value in an isothermal atmosphere for negative values of HST, 
that is when the temperature increases with height.    Then the fireball 
does not expand as rapidly as in an isothermal atmosphere and dis- 
places slightly less air than in an isothermal atmosphere, 

6.    General Solution of the Equation of Motion of Buoyant Rise 

In the differential equation of buoyant rise,   only   pA is a known function 
of height.    The latter is obtained as the first integral of rise speed. 
The rise speed,   the fireball radius and mass and its average density 
are unknown.    The average fireball density and the fireball mass can 
be computed from the differential Equations (5. 14) and (5. 16)   Equation 
(5, 14) contains the average ~F  of the fireball gases. Inorder to obtain 
it,  the volumes of the various fireball components and their respective 
Y'S have to be known,   as it is shown in Appendix 4.    Further equations 
are needed to complete the analysis. 

Energy and mass balance equations for the hot fireball gas and for the 
entrained air have to be considered in connection with the condition of 

13 
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pressure equilibrium between hot fireball gas,  entrained masses of 
air and the ambient atmosphere.    In the energy balance equations, 
the heat lost by radiation and the particular way in which heat is ex- 
changed between the hot fireball gas and the already attached and 
the newly entrained air must be taken into account.    Temperatures 
and densities of the various fireball components as well as parameters 
describing the radiative properties of air as a function of temperature 
and density will appear in the mathematical expressions. 

The fireball radius can be computed from a mass balance equation 
which,  for the spherically shaped fireball considered here,   is 

4n   3, ,          Mo          f1       dM      , ,.     ( 
^-r (t) =- + dte      . (6.1) 
3        F PF,l(t)       J0        pe(te,t) 

"pp^t)   refers to the spatial average of the hot fireball gas density at 
time t.    pe(t8,t)   refers to the spatial average at time t of the density 
of air entrained at time te.    The initial mass of the hot fireball gas is 
M0. 

This concludes the discussion of the equations which have to be solved 
simultaneously to obtain the speed,   mass and average density of a 
buoyantly rising fireball.    The assumptions made so far concerned 
the particular form of the mass entrainment law,   the assumption that 
the entrained air is attached to the fireball at its ambient density,  the 
assumption of a spherical fireball shape   and the use of the convention- 
al aerodynamic drag relationship.    The first mentioned assumption 
could be changed readily by using a different relationship for mass en- 
trainment,  but the latter three assumptions cannot be changed as 
easily.    The problem is difficult to solve in the nearly complete form. 
It is possible to analytically study the behavior of most of the unknown 
quantities to a lesser degree of approximation by introducing further 
approximations. 

14 
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DEVELOPMENT OF COMPUTATIONAL PROCEDURES 

7.    Quasi-Stationary Solution of the Equation of Buoyant Rise 

A great simplification results when   the equation of buoyant rise is 
considered in the quasi-stationary case.    It arises when the buoyant 
force 

2gU - PF/PA) (7.11 

is nearly cancelled by the sum of entrainment induced and aerodynamic 
drag 

(9U3/4Cd)v
3/rF       , (7.2) 

and the accelerating or decelerating force 

(1/H3p)(l -Hsp/YFH3e)v
3       . (7.3) 

A negligibly small fireball acceleration will be the result. 

Under the assumption that the validity of the present investigation will 
be confined to that portion of the rise where quasi-stationary behavior 
prevails the rise speed can be expressed by 

(7.4) 

It is seen that the speed will be a function of time mostly because of 
the variation with time of fireball radius and the ratio of average 
fireball density to ambient air density.    The effect of the third term 
in the denominator is usually small compared to that of the first two 
terms,   since buoyantly rising fireballs are always small compared 
to a scale height.    This is particularly true for fireballs rising in 
an atmosphere in which the temperature decreases with altitude. 

2grF 

v. 

9\ + 0. 75Cd-l i-i- 
YF 

Hsp 1 

Hse) Hsp 
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It is seen that for a small ratio of average fireball density to ambient 
air density,  which prevails during the initial portion of the rise equa- 
tion (7. 4) can be used to evaluate   X  from experimentally measured 
values of rise speed and fireball radius.    The drag coefficient must 
be evaluated for the proper Reynolds number.    Pertinent data are 
given in Appendix 2.    An approximate expression for the rise speed 
is obtained from experimental evidence as 

v ^ Ugrp]1/2       . (7.5) 

It is also seen that immediately after the burst when the average 
fireball density equals the ambient air density no buoyant accelera- 
tion exists.    At the end of the expansion phase the average fireball 
density has dropped appreciably below the ambient air density and 
the buoyant acceleration approaches an upper limit of 2g.    By neg- 
lecting drag while the fireball accelerates to its quasi-stationary 
speed,   an initial acceleration time 

tac=^  (rr/g)1/2 (7.6) 

is obtained. 

The entrainment of ambient air is proportional to rise speed and will 
therefore be most significant after this initial period of acceleration. 

8.    The General Computat;'.cn of the Average Fireball Density 

The calculation of the average fireball density is greatly simplified 
when energy loss due to radiation can be neglected.    The establish- 
ment of a relevant criterion is somewhat arbitrary.    Since the present 
analysis is concerned with average values,  the following criterion is 
proposed:  Radiative energy loss is neglected when radiation decreas- 
es the average fireball temperature less rapidly than mass entrain- 
ment.    Radiative cooling will certainly be important until mass en- 
trainment becomes significant at the end of the initial acceleration 
phase,   but even after this time it may control the radiative fireball 
temperature.    It is difficult to give general numerical estimates for 
the duration of radiative cooling as it has been defined above,  taking 
expansion and mass entrainment into account.    In the following,  the 
differential equation for the ratio of average fireball density to am- 
bient air density will be developed,   which is applicable once radiative 
energy loss can be neglected. 
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It follows from Equation (5. 14) that for   D« 1= 0A 

d(T)F/pA) 

Of/P; 

/ — 

1-^ 
DA 

dM 
M <f 

1   Hsp I dpA 

Vc H3e     oA 

(8.1) 

With Equation (5. 7) for  dpA/DA and Equation (5. 16) for dM/M,   Equa- 
tion (8. 1) appears as 

d(pF/DA) 

"PF/DA 

DF 

~ PA 

,.   PA dh 

PF rf 

i „_LHSD dh 

YF ^3e  | HSp 
(8.2) 

In this equation the first term on the right-hand side expresses the 
change in average fireball density due to mass entrainment,   the 
second term the change due to adiabatic expansion. 

As long as 

3X 
Hsp / PA \ 
  - 1 > 

1 PF 
1 

i... L HSP 
YF  H 

(8.3) 
Se 

mass entrainment determines the average fireball density.    The phase 
of the rise where this is true will be referred to as the mass entrain- 
ment dominated phase.    It is also seen that the average  YF   does not, 
under these circumstances appear in the differential equation (8, 2). 
This equation can therefore be integrated in closed form if one as- 
sumes that the fireball radius remains constant over the height of 
integration.    These simplifications will now be applied. 

9.    The Computation of the Average Fireball Density where 
Mass Entrainment Dominates 

The differential equation for the average fireball density (8. 2) con- 
taining the term due to mass entrainment only is 

d(PF/PA) 

1-PF/PA 

(9.1) 

This differential equation can easily be integrated if one assumes   rp 
to be a constant denoted by  rF ■xs   while integrating from h - 0 to 
h = rF k.    This is well justified because it will be seen later that   rF k 

varies only slowly with height.    By integrating N    times from  h = 0 
to h = rp k,   keeping   rFjk  constant during every step but allowing it 
to vary from one step to the next 

17 



RM 63TMP-25 

(pr/cA)N  =   1 - [1 -(PF/P*)O] e (9.2) 

is obtained.    The initial value,   that is the value of "pf/c* at the end of 
the radiative expansion phase,   when the fireball has already accelera- 
ted to its quasi-stationary speed,   is   {'PF/DA)0. 

Convenient approximations for Equation (9. 2) are: 

for      3\N « 1,   (DF/DA)N -  (pF/pA)0+ 3\N       , 

for      (pF/pA)0 « 1,   (DF/PA)N =l-e 
-3\N 

(9.3) 

(9.4) 

(9.5) and      for       3\N « 1   and  (cF/pA)0 « 1 ,    (oF/pA)N=   3N       . 

The total height htot N     over which integration has been carried out 
is 

N 

htct,N   -   l^    Tf^k (9.6) 

k=l 

The value of  rF j,  will be computed in a following section. 

The time  ttot N    for the fireball to rise to the height  htot N     is the 
sum of the time intervals to rise the individual step heights   rF k 

^lot ." -1 
k-1 

2grF k(l - (pF/pA)k) 11/3 
•    (9.7) 

9\ + 0.75Cd-(l -Hsp/vFikHSe)rF k/H sr. 

,th The value of the unknown quantity —
F  for the k      step appears in this 

equation in a term of minor importance only.     It is therefore adequate 
to use a very approximate value for  "> k. 

10.    The Computation of the Fireball Mass when Mass 
Entrainment Dominates 

The differential equation for mass entrainment (5. 16) can be integrated 
in analogy to Equation (9. 1) by integrating  N times from  h = 0  to 
h = rF k,   keeping   rFjk   constant during every step.    In this way,   the 
equation 
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dM |PA dh 

F.k 

(10.1) 

;oes by substitution with Equation (9. 2) over into 
N 

C 3\ 
'nM 

^   1-[1 -(PF/pA)0]e 
o 0 

-S'.N 
dK+ constant (10.2) 

Integration of Equation (10. 2) and use of M0 for  M leads to 

M 
M, 

l-[l-(?F/pAl]e-31 

o. (OF/OA), 

(DF/OA)N    3\H 
__  e 

(PF/PA)O 

(10.3) 

Convenient approximations for Equation (10. 3) are: 

for 

3>.N « 1 , 

for 

Mr 
:?'/0'1»+3;N-(lt3»N, . 

N (PF/PA)C 
(10.4) 

(PF/PA)O « 1 . 
M 

3AN 
=  e       - 1 

0    N 
(10.5) 

and for 

3\N « 1   and  (pF/pA)0« 1,  1^ 
^ Mo' N 

1 + 
3).N 

('PF/PA)O 

(10.6) 

11.    The Computation of the Fireball Radius when Mass 
Entrainment Dominates 

The ratio of fireball mass to original mass after having risen N in- 
stantaneous radii is 

\U_ 

Mo 

PF   N   rF   N 
_ ) £_ 
_   — 3 (11.1) 
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From this one obtains by simple transformation 

M_ 
M, C A   ) 

JA,0 

(PF/PA)N    lDSN 

1/3 

rp o (11.2) 

The substitution of Equations (9. 2) and (10. 3),   and the assumption of 
an atmospheric density declining with scale height  HSp  leads to 

(U+ -r—i-) 
3H SD 

rF   N    _     rF.O   e 

By neglecting the growth of the fireball radius, 

N s htotjN/rF)0- vttotjN 

(11.3) 

rp.N ^   i"F o  e ^"Sp rFJ0 (11.4) 

An estimace of the expansion velocity   rp N is obtained by differentia- 
tion of Equation (11. 3) 

(W 
rF,Q       VttotJN 

3H 
-F   N 3H, 

sc (11.5) 

It is seen that the speed of expansion is smaller than,   or at most about 
equal to the rise speed v,   provided the initial fireball radius is small 
compared to a scale height and provided the fireball has risen no more 
than several scale heights.    It can be shown that fireballs exceeding a 
certain size are increasingly more influenced by the "pressure force" 
mentioned before,   than by buoyancy forces (see Reference 1).    The fire- 
ball radius when the transition starts to take place is difficult to determine 
but is certainly larger than about one-fifth of a scale height.    It's most 
likely value is five-to seven-tenths of a scale height.    Numerical examples 
show that the entrainment controlled phase of nuclear-fireball rise rarely 
exceeds a few scale heights.    For these reasons the assumption of buoy- 
ant fireball rise is justified for fireballs of less radius than five-tenths 
of a scale height. 

In case the scale height changes with altitude,  the fireball radius should 
be computed from 
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3H 
F.N =   ^F,H-I  e sp     , (11. 6) 

by using the instantaneous value of the scale height HSc. 

12.    The Computation of the Average Fireball Temperature 
when Mass Entrainment Dominates* 

The condition of pressure equilibrium between the fireball gas and 
the ambient atmosphere allows to compute the average fireball tem- 
perature after the fireball has risen  N instantaneous radii as 

— RA      PA ^ 
TF)N  =^r-   zr^-  TAjN       . (12.1) 

Rp w   DF^N 

The specific average gas constant of the fireball RF N can be obtained 
from Equation (A3. 7) of Appendix 3. 

The average temperature of the fireball is defined in Appendix 3. 

13.    Graphs of (pF/cA)N,   (M/Mo)N and   1/(PF/PA)N 

It is seen that the expressions for  ("PV/P/OM and (M/M0)    depend only 
upon the product of   ■ • N and the initial conditions.    The mentioned 
functions can therefore easily be plotted.    This is done in Figures 
1 3. 1 through 1 3. 3.    Figure 1 3. 4 gives the factor  1/("pF/pA)N which is 
needed for a determination of the average fireball temperature.    It is 
good to keep in mind that the abscissa in all these figures is the product 
of  K • N,    so that a different mass entrainment factor   X  implies a dif- 
ferent  N.    Since  N  is the number of instantaneous radii the fireball has 
risen,   it is also a measure for the fireball height htot e above the burst 
height,   to which the fireball has ascended in entrainment dominated rise. 
By neglecting the growth of the fireball radius 

htotN;>NrFO       . (13.1) 

From 

htot.N " v t tot.N       > 

iV; -  2[grFjQ]/2ttot)N (13.2) 

and Equation (10. 4) it follows that 

*   See Page 49. "" 
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Figure 13. 1.    Density and Mass Ratios for Entrainment Dominated 

Fireballs 
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Figure 13. 2.    Density Ratios for Entrainment Dominated Fireballs 
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ttot.N  ä  NrFjo/v 

- NrF)o
1/2/2g1/S       • (13.3) 

14.    The Computation of the Average Fireball Density when 
Adiabatic Expansion Dominates 

The differential equation (8. 2) for the average fireball density con- 
taining only the term due to adiabatic expansion is 

d(pF/pA)        |        j^   HSp 
*       . (14..) 

PF/PA 1 VF   H^l HsP 

This differential equation describes the average fireball density once 
inequality (8. 3) reverses.    This phase of the rise during which the 
average fireball density is determined by adiabatic expansion rather 
than entrainment,   will be referred to as the expansion-dominated 
phase of the rise.    The value of vF  will now be close to that of ambient 
air,   since the fireball has been cooled by entrainment. 

Upon integration the ratio of average fireball density to ambient air 
density at height h above that height where entrainment ceased to 
dominate is found to be 

(l_J-Hsp-    h 

(PF/PAK  =   (PF/PA)N  e Vf Hso     H5D       . (14.2) 

The ratio  (PF/PA)N  refers to the ratio at the termination of the entrain- 
ment-controlled phase of the rise. 

The height htot a for which the fireball will rise controlled by adiabati( 
expansion until its average density is equal to the ambient air density 
so that the buoyancy force disappears is 

m-    1 

h
tot,a = 1  HSD     Hsp      • (14.3) 

7F Hs 

The ratio  (PV/PAIN is the ratio of  pF/pA  at the end of the entrainment- 
dominated phase of the fireball rise.    Its value is obtained from ex- 
pression (9. 2) for that  N for which  rF N and (pV/pA)N assume such 
magnitudes that the inequality (8. 3) ceases to be valid. 
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In case the scale heights change with altitude the ratio of average fire- 
ball density to ambient air density should be computed step by step 
from 

(1- = 
1    Hsr    Ah 

vF  HSe    Hsp 
(Pr/DA)h = (Pr/Wh-Ah  e 

by using the instantaneous scale heights  HSp  and HS; 

(14.4) 

15.    The Computation of the Fireball Mass when 
Adiabatic Expansion Dominates 

The computation of the average fireball density during that portion of 
its rise when adiabatic expansion dominates the average fireball density 
is based upon the neglect of mass entrainment.    As a consequence the 
fireball mass remains constant.    Its value is obtained from expression 
(10. 3) for that N  for which  rFjN and (PF/PA)N  assume such magnitudes 
that the inequality (8. 3) ceases to be valid. 

16.    The Computation of the Fireball Radius when 
Adiabatic Expansion Dominates 

The fireball mass is constant during the expansion controlled portion 
of the fireball rise.    For this reason it follows that 

3      — 3      _ 
rF,h   PF,h   -    rF   N   Pf   -. (16.1) 

By simple transformation 

rr,N 

PflVa   /pA   Vs 

\ 0A'N PF/ 

DAN 

>DSh/ 

1/3 

(16.2) 

With the help of Equations (5. 7) and (14. Z],   Equation (16. 2) becomes 
1      h 

3YF   Hse 

!>,!!  =   rF)N e . (16. 3) 

In this equation  r,: h  is the fireball radius at height h above that point 
where adiabatic expansion started to dominate,    rF N is the fireball 
radius where transition from entrainment limited to expansion-con- 
trolled rise took place. 
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An estimate of the expansion velocity is obtained by differentiation 
of Equation ( 16. 3) under the approximation that h =" v ttot. 

1 

1     V
F ,-. vci,    3vFHS0 

■F.h -.   n      e v      . (16.4) 
3vF  "Se 

It is seen that the speed of expansion is small compared to the rise 
speed v,   provided the fireball radius at the beginning of the expan- 
sion-controlled phase is small compared to the scale height  H%s,   and 
provided the fireball has risen no more than several scale heights  H5e. 
This result is quite similar to that obtained for the expansion speed 
during the entrainment-controlled portion of the rise.    Therefore the 
same reasoning used there also applies here.    As a result it can be 
concluded that all fireballs of less radius than about one-third of a 
scale height rise buoyantly,   that is in pressure equilibirum with the 
ambient atmosphere. 

In case the scale heights change with altitude the fireball radius should 
be computed step by step from 

1       Ah 

3vF HSe 

r^h =  rF,h-Ah e (16. 5) 

by using the instantaneous scale height HSa  . 

17,    The Computation of the Average Fireball Temperature 
when Adiabatic Expansion Dominates* 

The computation of the average fireball temperature when adiabatic 
expansion dominates proceeds exactly as it does in case entrainment 
dominates. 

18.    Computational Example of Entrainment and 
Expansion-Controlled Buoyant Fireball Rise 

The following   table gives an example for the practical numerical 
evaluation of buoyant fireball rise from formulae derived in the 
present report. 

Initial values of fireball radius rF 0 and of the ratio of average fire- 
ball density to ambient air density CPV/PAIA 

are assumed. The burst 
height is taken as 20 km.    The mass entrainment parameter  \  is 

See Page 49. 
28 



RM 63TMP-25 

assumed to be 5- 10"2.    The fireball radius during the entrainment- 
dominated portion of the rise is compuied from Equation (11. 3),  the 
ratio of average fireball density to ambient air density from Equa- 
tion (9. 2),  the rise speed from Equation (7. 4).    The height to which 
the fireball has risen and the time for the rise are computed from 
Equations (9. 6) and (9. 7). 

The transition from entrainment dominated to expansion-controlled 
rise is determined from inequality(8. 3).    During the expansion-con- 
trolled phase of the rise the fireball radius follows from Equation 
(16. 3),  the ratio of average fireball density to ambient density from 
Equation (14. 2),  the rise speed from Equation (7. 4).    The equivalent 
scale height is quoted in Equation (5. 10).    The various scale heights 
of interest are listed in Appendix $.    It is also assumed that the scale 
heights do not change with altitude.    In case it is desired to take 
changing scale heights into account,  Equation (11. 6) should be used 
instead of Equation (11. 3) for the computation of the fireball radii 
during entrainment-dominated rise,  and Equation (16. 5) instead of 
Equation (16. 3) during expansion-dominated rise; Equation (14. 4) 
instead of Equation (14. 2) should be used to compute the fireball 
density during the expansion-dominated phase. 
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htot)n-i+ Txi-i r                  1      ITA \ 
3Hs: \ 2g 1>,v   '-    ~ 

N Tr,: = r,i0 e ,  Hsc = 6. 4 km ■ = 5. 10-= 
■K-1 

1 n     1  -.    \       -     1 Vs = I       1 DA \l 

e-3\s 

o J 

I           1     l-sc    rf 
9U0.75C,-  1-—-^ J 

[0] [km] [km] [0] fkmsec"1] 

1   0 

1 

rF,o= 0.83 

{5- 10"2+ 4. 3-  lO"2) 
=  0.91 

0 

0. 91 

0.05 

0. 185 

0.187    0. 187'ic 

0.182    0.182* rr)1 = 0.83 

1   2 rfj3=     " 
(lO'^ 9. 5- lO"3) 

•   e =   1.01 1.92 0. 30 0.179    0.177*           I 
1 

3 
^,3=       " 

(1. 5- XO'U 1. 52-  ID"1) 
=  1. 13 3.05 •• 0.40 0.176   0.114*          1 

4 rF,4=    " 
(2- 10-l+2. 17-  lO-1) 

=  1. 26 4. 31 0.48 0.174   0.171*          J 

5 rf)5=     " 
(2. 5' lO"^ 2.9-  IQ"1) 

•   e =  1.42 5.73 0. 55 0.173   0.169* 

6 rF)6 =     " 
(3- lO^t 3. 7- lO"1) 

•   e =  1.63 7. 36 0. 615 0.174    0.167* 

*   The asterisk indicates values obtained using the approximation expression VN > 

calculation where it is 0. 05,  the aforementioned approximation is justified since 

expression has been used to evaluate  VN. 

2grf)N(l - PF/P»)N 

9X 

i _ _1_ Hsp| r^N 

v      HSaj Hsp 

When the drag coefficient  ( 

0. 75 C,].    When not otherwise in 

[km] 

1    h 
3YrHSa „0.03311 rra =   rr.N  e     '     '"   = 1. 63 e 

Uii =7.3 km,   Hsp = 6.6 km , ~, = 1.4 

[km] 

7. 36 + h 

[km] 

(Pr/P»)h = 
1   h 

(?F/CA).evfHs' 

[0] 

2grF i,(l - {p-/p»)h) 
TT 1 so 

■f   N  Hsa     HsP 

ys 

[km sec"1] 

Ah 
Ath = — 

[sec] 

3.0 rf 30 =   1. 63 e0-1 =   1. 63- 1. 105    =   1. 80 

4.95 rf 4.95=       "    e0-16=   1.63- 1. 177    =   1.92 

10. 36 

12. 31 

0.615 e0-29   = 0.83 

0.615 e0-486 = 1.00 

0.038 7.9 

t   The rise speed has been computed under the assumption that the drag coefficients  Cd  remains constant at about 0. 1.    This is appr 
of the order of 109. 

Table 18. 1.    Computation of Entrainment and Expansion Control Buoyant Rise. 
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12. 31 

0.615 e0-29  = 0.83 

0.615 e0-485^ 1.00 

0. 038 

0 

^7.9 50. 4 ± 0. 4 30. 3 

30. 3 

ler the assumption that the drag coefficients  Cd  remains constant at about 0. 1.    This is approximately true for Reynolds numbers 

ainment and Expansion Control Buoyant Rise. 
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APPENDIX 1 

ON THE EQUATION OF MOTION OF 
THE BUOYANT RISE 

The addition of the term  MpJZpf to the mass of the fireball in the 
equation of motion takes the pressure forces into account which ap- 
pear during acceleration of a solid sphere in an infinite mass of 
incompressible fluid which is at rest at infinity.    The expression 
has been taken from H.   Lamb's book on Hydrodynamics,  Dover,  Inc. , 
N. Y. ,  6th edition,  p.   124. 

The mentioned condition corresponds to the model used in the present 
report where the fireball is assumed to be of spherical shape.    In 
addition the rise speed is almost always subsonic and thus the assump- 
tion that the ambient atmosphere behaves like an incompressible fluid 
is \alid.    The term MpA/2pF is just one-half of the ambient air dis- 
placed by the fireball.    It represents the "equivalent mass" of air 
which must flow around the fireball to let it pass.    Its contribution 
limits the acceleration which fireballs of very low average density 
and therefore very small mass can receive. 

Once the acceleration of the fireball stops and a quasi-stationary 
behavior of the fireball speed is established,  aerodynamic and en- 
trainment induced drag and drag due to the change in fireball radius 
and thus in the mass of displaced ambient air control the fireball's 
speed. 

31 



RM 63TMP-25 

APPENDIX 2 

SUBSONIC DRAG OF A SOLID SPHERE 

In Figure AZ. 1 the subsonic drag coefficient of a solid sphere is plotted 
as a function of the Reynolds number.    The drag coefficient Cd allows 
to compute the drag force  Fd acting upon a sphere of cross-sectional 
area A  moving at speed v through a medium of density  pA 

Fd  =  CdDAAvs/2       . (A2. 1) 

The force is due to pressure differentials in the gas surrounding the 
sphere and not to frictional forces between the sphere's surface and 
the ambient gas.    The pressure differentials are produced by bound- 
ary layer separation and by the generation of waves.    For some of 
the range of Reynolds numbers of interest in fireball rise,   the surface 
frictional drag is small compared to pressure drag.    For Reynolds 
numbers larger than  107 to   108 no values for the drag coefficient 
could be found.    It may be reasonable to assume that the drag coef- 
ficient decreases slowly above a Reynold's number of  10    and has a 
value somewhere between   10"    and  10_1. 

The Reynolds number is defined as 

Rd  = 77"  PArv       . (A2. 2) 
uv 

In Figure A2. 2 the Reynolds number  Rd for a fireball of radius   r  in 
cm moving at a speed v in  cm sec-1 in the atmosphere of viscosity 
Uv — 1. 8 • 10"4g cm sec-1 is plotted as a function of height. 

The plot for the drag coefficient has been taken from:  Hoerner, S. F. , 
"Fluid Dynamic Drag, " published by the author,   1958,  Section 3-8. 
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Figure AZ. 1.    Subsonic Drag Coefficient 
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APPENDIX 3 

THE DEFINITION OF AN AVERAGE 
FIREBALL TEMPERATURE* 

Average fireball temperature is defined as that temperature which 
must prevail in the mixture of gases within the fireball in order to 
yield the total translational molecular energy of all its various com- 
ponents at their respective temperatures under the assumption of 
pressure equilibrium.    To illustrate this formally let the subscripts 
o and F,I   refer to the hot fireball gas,   e  to the entrained air and * 
to ambient air.    R  is the specific,   )i the universal gas constant,   M 
the mass of gas present,   and u   the molecular weight.    The definition 
of average fireball density   Op as the ratio of total mass to total volume 
gives 

_ Mn+M. 

PF,1 Pe 

The equality of translational molecular energy in the mixture of fire- 
ball gases at the average fireball temperature   TF and in the mixture 
of fireball gases at their respective temperatures leads from 

M0       Me \ —   0 1   + —    TF S 
uF i      ue 

'_Mo_T M^ R 

UF.I       '        Uj 

to 

—        M0 RF , TF . + Me R, Te ,..,,, 

■"''-^RT^üX     ■ <A3-3) 

The conditions of pressure equilibirum 

DFjl RFjl TF)I  =  peRe T8 =  pARA TA (A3. 4) 

and 

See Page 49. 
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1TF RF Tf  =   cA RA TA (A3. 5) 

lead to the average fireball gas constant 

R ^ / M^\ 
M0+Me     '''     ^        Mo+Me| 

The specific gas constant RF j  and the temperature  Tf j  of the origin- 
ally hot fireball gas can be obtained from the tables on thermodynamic 
properties of air mentioned in Appendix 4.    One must follow the iso- 
tropic changes of state of the originally hot fireball gas.    The value of 
the gas constant and of the temperature can be read at that point where 
the entropy is equal to its initial value and the pressure equal to the 
ambient pressure.    The ratio of initial mass  M0 to total mass (MQ+MJ 

can be obtained from Equation (10. 3) of the main body of this report. 
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APPENDIX 4 

DEFINITION OF  Y FOR A NON-IDEAL GAS 
AND Y  FOR A MIXTURE OF GASES 

Introduction 

The internal energy of an ideal gas can be expressed by its state 
variables and a constant parameter  y.    The same  Y also appears 
as an exponent to the state variables in the adiabatic equation of 
state.    For a real gas the internal energy can be expressed by its 
variables of state and a parameter  y  in complete formal analogy 
to the description of an ideal gas.    This  v is not a constant for 
real gases but depends upon their state variables.    The adiabatic 
equation of state for real gases can only,  for small changes of the 
state vciriables,   be expressed in formal analogy to the correspond- 
ing law for an ideal gas.    Even then the parameter  Y  appearing in 
the exponent to the state variables in the expression for the adiabatic 
equation of state is not identical with the parameter  Y  appearing in 
the expression for the internal energy.    In addition,  the adiabatic 
equation of state for a real gas loses all formal similarily to that 
for an ideal gas if large changes of the state variables are considered. 
In the following this will be discussed in detail. 

On The Definition of  Y  For Ideal and Non-Ideal Gases 

The internal energy £ per mole of ideal gas at temperature   T  is 

RT 
Y-l 

(A4. 1) 

The universal gas constant is denoted by ß.    The internal energy per 
unit mass is obtained by dividing the internal energy per mole  £ by 
the molecular weight |i 

ßT RT 
E  = ^TT   = -^r       . (A4. 2) 

U(Y-I)      v-i 
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The specific gas constant is denoted by R .    It is easy to see from 
Equation (A4. 1) that y is equal to the ratio of molecular specific 
heat at constant pressure and the molecular specific heat at constar.t 
volume if one keeps in mind that the universal gas constant is the dif- 
ference between these two magnitudes. 

The equation of state for an adiabatic process,  that is for a process 
in which no energy in the form of heat is added to or removed from 
the volume of gas considered,   is obtained from the first law of thermo- 
dynamics in the form 

dE + pdV =  0       . (A4. 3) 

This relationship states that the sum of the change in internal energy 
dE per unit mass and of the external work vanish.    The latter is the 
product of pressure  p  and change of specific volume   V.    The differ- 
ential equation for an adiabatic change of state of an ideal gas is then 
obtained by substitution from Equation (A4. 2) into Equation (A4. 3) and 
by substituting for  p  and dp  from the gas law 

p  = RpT       . (A4. 4) 

The density is as usual referred to by   p.    In this way the differential 
equation for an adiabatic change of state of an ideal gas is obtained 
as 

dp = Y TTT dT    • (A4> 5) 

Integration and substitution for   p  and T  from the ideal gas law 
(A4. 4) yields 

1-Y 
1 — V V — V. 

Tp =  const. ,        Tp =  const. ,       pp       = const.      (A4. 6) 

The   v  in Equation (A4. 6) is identical with the   v  in Equations (A4. 1) 
and (A4. 2) . 

For an ideal gas,    v  or the ratio of specific heats is independent of 
the state variables and the internal energy varies linearly with tem- 
perature.    The number of particles per mole of originally present 
ideal gas does not change as a function of the state variables. 

What has been said about the properties of an ideal gas is approxi- 
mately true for a real gas provided it is sufficiently far from its 
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critical point.    This implies that the gas must be at a temperature 
well above the critical temperature and at a density well below the 
critical density.    The main constituents of air,   N2 and 03 can be 
described by the   Y  of an ideal diatomic gas of 1. 4 for temperatures 
at and above room temperature and for densities at or below normal. 
With increasing temperature any real gas eventually deviates from 
its ideal behavior.    Heat energy begins to be transferred into internal 
molecular energy.    At high enough temperatures the gas particles 
will become dissociated and ionized and thus the number of particles 
per mole of originally present gas will increase.    As a consequence 
the internal energy does not vary linearly with temperature.    The 
change in the number of particles present changes the molecular 
weight and therefore the specific gas constant.    It is nevertheless use- 
ful to retain the definition of the internal energy of a gas per mole as 

- BT . (A4. 7) 
'(T,p)-1 

and of the internal energy per unit mass as 

R'"(T'(,'T 

The function  Y,   now dependent upon the state variables,   cannot any 
more be interpreted as the ratio of specific heats.    Similarly the 
specific gas constant  Rp !  is a function of the state variables. 

In Hilsenrath,   T. ,   et al. ,   "Tables of Thermodynamic Properties of 
Air Including Dissociation and lonization from 1500oKto 15, 000° K," 
Arnold Engineering Development Center,   Report TR-59-20,   December 
1959,   the internal energy E:'s  per mole of the original (that is under 
normal conditions present) air is given as a function of temperature 
and density.    The internal energy  Ev  is normalized in the mentioned 
reference by dividing it by the product of universal gas constant and 
temperature.    (The universal gas constant in the mentioned reference 
is designated by  R   rather than by  )i,   as it is done in the present 
paper. )   The number  Zv  of moles of gas present relative to one mole 
at normal conditions is also listed as a function of temperature and 
density.    This allows one to compute the specific gas constant  RF j 
at a temperature   T  and density   p from the specific gas constant R 
at normal conditions from 

RF 1  =   Z*R       . (A4. 9) 

39 



RM 63TMP-25 

At temperature  T and density  p the internal energy per mole is 
according to the definition of  v  in Equation (A4. 7) 

e = ^ = RT 
Z5!<       Y(T,p)-l 

(A4. 10) 

From that  v  can be computed as 

E*/RT+Z* 
Y(T.D) = E*/RT 

(A4. 11) 

Since the enthalpy H* per mole of original gas is  H* = Ev + Z'RT, 
Equation (A4. 11) reduces to 

H>:7ßT 
Y(T,p)   = 

E*/RT 
(A4. 12) 

This   Y has been computed and is given in graphical form in Figure 
A4. 1. 

To obtain the differential equation for an adiabatic change of state of 
a real gas,   the internal energy per unit mass of a real gas is ex- 
pressed from Equations (A4. 8) and (A4. 9) as 

Z*RT 
Y(T,o)-l 

(A4. 13) 

The gas law assumes the form 

p  =   Z!;<RpT (A4. 14) 

The differential equation for an adiabatic change of state for a real 
gas is obtained in the same way as for an ideal gas and turns out to 
be 

1 Sv 

do 
'-1) äT      Z*  äT 

1    ÖZ*     J_ 
T 

1 
T 

öv       1     ÖZ*      Y-l    P 
+ 

Y-l   dp       Z*    äp 

dT (A4. 15) 

For small changes in temperature and density the functions   Y  and 
Z¥   can be considered as constant and the differential quotients be 
approximated by difference quotients.    Comparison with Equation 
(A4, 5) shows that for small changes in temperature and density a 
Vf i may be defined,  which allows the use of the adiabatic equations 
of state (A4. 6) of an ideal in the case of a real gas.    This is done by 
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replacing  vJ   in the adiabatic equations of state (A4. 6),  by  YF 

1     ÖV       1     ÖZ*      Y-l 
+ 

y-l Sp     Z*    Sp p       p 
V^ = 1+   j^^   j_az*   r    T    • (A4-16) 

v-1 ÖT       Z*   ÖT       T 

The  vF ,  is different from the  Y  of Equations (A4. 7),   (A4. 8).  (A4. 10), 
(A4. 11) and (A4. 12).    It has been computed and is given in graphical 
form in Figure A4. 2.    For large changes in the state variables,  Equa- 
tion (A4, 15) must be integrated.    The result cannot be written in a 
form analogous to the adiabatic equation of state of an ideal gas. 

The  Y for a Mixture of Gases 

It is of interest to express the properties of a mixture of gases in 
pressure equilibrium by its average temperature and average density. 
The average temperature may be defined as that temperature at which 
the translational molecular energy in the mixture of gas equals the 
total translational molecular energy of all its components at their re- 
spective temperatures.    The average density is defined as the ratio 
of total mass to total volume.    The  vF which must be used in the adia- 
batic equation of state for a mixture of ideal gases in pressure equi- 
librium is obtained by the following considerations.    The average 
density   p   is 

SMn n 

S(Mn/pn) 
(A4. 17) 

The Mn  refers to the mass,  the  pn to the density of the rr11 com- 
ponent.    By differentiation 

JUM./p.Hdp./p,) 
^       HM./p.) <A4-18> 

is obtained.    By expressing the adiabatic change of state of every 
component according to Equation (A4. 5),   Equation (A4. 18) becomes 

D Mn     1        dTn 
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The same change in average density and temperature is experienced 
by a hypothetical ideal gas with a  Y  of "p 

d?=^^-      . (A4. 20) 
T   vF-l 

Substitution of the adiabatic change in pressure corresponding to the 
adiabatic change in temperature 

Yn-1 dpn       dTn                          YF-I   dp dT ISA   „, 
 = ——        and -■=-                            (A4, 21 

Yn        Pn Tn YF        P     T 

transforms Equations (A4. 19) and (A4. 20) into 

^.—L ^liE^.iiE   . (A4.22) 
E(Mn/pn) „    pn   Yn  pn vF   P 

The condition of pressure equilibrium between all the components 
allows to write Equation (A4. 22) in the form 

E(Mn/pn)   p    n     p,,    Yn v     p 
n ' f 

With 

i:(Mn/pn)  =  E(Mn/?)      , (A4. 24) 
n n 

Equation (A4. 23) assumes the form 

"D Mn    1 0 
Jp  =  -^-S-^~  =  --l-       . (A4. 25) 

JT   " Mn     'n YF 

In this way 

"F 
P Mn      1 

I Mn n    Pn    Yn 
(A4. 26) 

is obtained.    It is interesting that this is an average using the volumes 
as the weight factors.    This ~f must be used in the adiabatic equation 
of state to express average temperature and average density of a mix- 
ture of ideal gases in pressure equilibrium.    It is seen that not only 
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the masses  Mn  of the various components and their respective  vn 

have to be known,  but also their densities   pn have to be known so 
that ~f may be computed.    Since the   p,,  change during an adiabatic 
process,  the definition of an average Yp  is only good for small 
changes of the state variables.    In case the mixture of gas contains 
real gases the dorresponding   Vn's  must be replaced by the approp- 
riate   vF  j's . 
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APPENDIX 5 

SCALE HEIGHTS 

The introduction of a scale height HST  of temperature requires some 
explanation.    Usually the variation of atmospheric temperature with 
altitude is not described by scale heights.    For large ranges in alti- 
tude such a description would be inconvenient because the atmospheric 
temperature varies linearly with altitude.    For small changes in alti- 
tude one obtains for a temperature gradient dT/dh 

-f- T e 

Ah 
H ST T  1 

Ah 

HST 
(A5. 1) 

and the local scale height is 

T 
HST dT/dh 

(A5.2) 

One sees that a description in terms of a scale height HST  is valid 
as long as the aliitude differences considered are small compared 
to Hsr.    This is always the case for calculations on fireball rise. 
Hence the introduction of a scale height of temperature seems justi- 
fied.    It is also seen that a positive scale height implies a decrease 
of temperature with altitude,  while a negative scale height describes 
an increase. 

Table A5. 1 lists the scale heights of atmospheric density HSp  and 
atmospheric temperature  HST.    The equivalent scale height HSe 

given in Equation (5. 10) and the ratio Hsp/HSe are also tabulated. 
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Table A5. 1.     Scale Heights as a Function of Altitude 

Altitude Hso Hsr HSe Hsp/Hs 

(km) (km) (km) (km) (km) 

0 
7. 80 + 44 6. 63 1.03 

5 
7. 31 + 39 6. 14 1. 17 

11 
6. 87 CO 6.87 1.00 

15 
6.54 cc 6; 54 1.00 

20 
6. 40 CO 6. 40 1.00 

25 
6. 57 -73 7.25 0.906 

30 
7. 10 -79 7.80 0.910 

35 
7.46 -85 8. 19 0.911 

40 
8. 10 -91 9.00 0.900 

47 
8. 36 cc 8. 36 1.00 

50 
8. 42 cc 8.42 1.00 

53 
8.0 + 60 7.04 1.12 

60 
7. 34 + 55 6. 50 1. 13 

65 
6. 7 + 50 5.92 1. 13 

70 
5.92 + 46 5. 24 1. 11 

75 
5. 37 + 42 4. 97 1.08 

79 
4. 98 CD 4. 98 1.00 

85 
4. 98 CC 4. 98 1.00 

90 
5. 16 -50 6. 25 0. 826 

(continued) 
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Table A5.1.    (continued) 

titude Hsp HST Hs. 
Hsp/Hs 

(km) (km) (km) (km) (km) 

5. 16 -50 6.25 0. 826 

95 
5.59 -55 6.21 0.900 

100 
6. 22 -60 6.94 0. 896 

105 
6. 83 -15 12. 5 0. 546 

no 
10. 4 -20 21.8 0.477 

115 
12.5 -25 25.0 0. 500 

120 
16.1 -30 34. 5 0. 467 

125 
18. 3 -35 38. 4 0. 477 

130 
21.9 -40 50.0 0.438 

135 
24. 0 -45 50.0 0.480 

140 
27. 7 -50 62. 5 0. 443 

145 
30. 3 -55 66.7 0. 454 
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APPENDIX 6 

HEAT EXCHANGE BETWEEN THE HOT 
FIREBALL GAS AND THE ENTRAINED AIR 

In the main body of this report the assumption has been made that no 
heat is exchanged between the hot fireball gas and the entrained air. 
The calculation of the various physical quantities of interest has then 
been carried out by using an average temperature.    The true tempera- 
ture of the fireball gases are those obtained by adiabatic expansion 
from their initial values.    The average temperature is defined in Ap- 
pendix 3.    It is not the temperature which would be achieved after 
fireball gas and entrained air have exchanged heat; it is that tempera- 
ture which must prevail in the mixture of hot fireball gas and the en- 
trained air,  which have not exchanged any heat,   so that pressure 
equilibrium is maintained between the fireball and the ambient at- 
mosphere. 

The average temperature so defined would be the temperature after 
heat exchange,   if both fireball gas and entrained air did have the same 
Y  in the expression for'the internal energy per unit mass (Equation 
(A4. 2) of Appendix 4).    This is not the case because the fireball gas 
is ambient air which has been heated to a high temperature and in the 
process has deviated from its ideal behavior.    Dissociation and ioniza- 
tion have taken place and the internal energy of the hot gas is much 
larger than one would expect from its ideal behavior at low tempera- 
tures.    If therefore hot fireball gas and entrained air exchange heat 
the resulting temperature would be higher than the average tempera- 
ture mentioned above.    As a consequence the fireball density would be 
lower,   the fireball radius larger. 

It is easy to lift the assumption that no heat exchange takes place be- 
tween the hot fireball gas and the entrained air.    The computation of 
fireball rise becomes somewhat more complicated in the process and 
insight into the phenomena taking place is somewhat obscured.    The 
computation remains similar to that presented in the main body of 
this report.    The details are as follows. 
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The calculation starts by assuming a certain initial ratio  (pp/pA)0 of 
fireball density to ambient air density.    From this and Equation(10. 3) 
of the main body of this report the mass  Mi of the firebal1 at the end 
of the first step can be computed.    The first step is the time it takes 
the fireball to rise a height equal to its initial radius.    At the end of 
the step the hot fireball gas and the entrained air are assumed to com- 
pletely exchange heat.    The process occurs at constant pressure.   For 
this reason the thermodynamic potential which is conserved is the 
enthalpy.    This can be expressed by 

Mc 
Ml 

^F,I  - TT   HFio + M, 
H. (A6. 1) 

The enthalpy per unit mass is denoted by H, the mass of air by M. 
The subscript F O refers to the initial fireball mass, F,I to the fire- 
ball mass at the end of the first step and A to the ambient air. 

It is therefore easy to compute the enthalpy per unit mass HF 1 after 
heat exchange.    It is also known at what pressure the fireball is at the 
end of the first step; this pressure is the ambient pressure encountered 
at a height equal to the initial fireball radius above the initial height of 
the fireball center.    The two variables of state,   enthalpy and pressure, 
can be used to determine temperature and density of the fireball gas 
after mixing by using tables of the thermodynamic properties of air. 

The density so found can be used to compute the fireball radius after 
heat exchange.    It also sets the initial condition for the ratio of aver- 
age fireball density to ambient air density in the calculation of the 
second step.    In this way buoyant fireball rise can be computed step 
by step,  allowing complete heat exchange to occur.    The transition to 
expansion controlled rise is determined from inequality (8. 3) of the 
main body of this report,  by using the values of fireball density and 
fireball radius obtained by taking heat exchange into account. 

Consideration of the case where incomplete or delayed exchange of 
heat is assumed proceeds in an analogous manner. The details are 
left to the reader, 

T. Hilsenrath's,   et al. ,  tables of thermodynamic properties of air 
quoted in Appendix 4 are very useful for the present purpose.    From 
these tables the   Y  for the determination of internal energy,   the 
YF i = Y for the adiabatic equation of state,  the sound speed  C and 
the enthalpy H per unit mass have been computed.    The tables them- 
selves,   in addition to the magnitudes mentioned,   have been listed 
and can be supplied upon request. 
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